
Component-Based Cluster Systems Software Architecture:
A Case Study

Narayan Desai, Rick Bradshaw, Ewing Lusk
Argonne National Laboratory, Argonne, Illinois 60439

Ralph Butler
Middle Tennesee State University, Murfreesboro, Tennessee 37132

Abstract

We describe the use of component architecture in an
area to which this approach has not been classically ap-
plied, the area of cluster system software. By “cluster
system software,” we mean the collection of programs
used in configuring andmaintaining individual nodes, to-
gether with the software involved in submission, schedul-
ing, monitoring, and termination of jobs. We describe
how the component approach maps onto the cluster sys-
tems software problem, together with our experiences
with the approach in implementing an all-new suite of
systems software for a medium-sized cluster with unusu-
ally complex systems software requirements.

1. Introduction

This paper describes an application of the princi-
ples of component architecture to cluster system soft-
ware. By “cluster system software,” we mean the col-
lection of programs that are used in configuring and
maintaining individual nodes, together with the soft-
ware involved in submission, scheduling, monitoring,
and termination of jobs. For our definition of com-
ponent software we adopt the principle presented by
Szyperski in [?]:

A software component is a unit of composition
with contractually specified interfaces and ex-
plicit context dependencies only. A software
component can be deployed independently
and is subject to composition by third par-
ties.

Components as a guiding idea for software architec-
ture have been applied in diverse areas, from scien-
tific software for supercomputers [?] to business soft-
ware for Windows [?]. Only recently, however, has the

idea been applied in a comprehensive way to the sys-
tem software that manages clusters.

The Scalable Systems Software Project [?] is study-
ing the feasibility of using a component approach to
structure systems software for highly parallel comput-
ers. Some of us are participants in that project, in
which specific component implementations are being
developed. Others of us are responsible for the day-
to-day operation of the Chiba City cluster [?] at Ar-
gonne National Laboratory, which as a cluster dedi-
cated to scalability research in computer science pro-
vides a number of challenges in the area of systems
software. In this paper, we describe the merging of
these two efforts, as an abstract system architecture
with public interfaces among components contributed
by various members of the community is deployed on
a real cluster and put into production use. This expe-
rience provides an opportunity to evaluate the bene-
fits and drawbacks of the component approach applied
in the area of cluster systems software.

In Section 2 we expand the definition of components
and summarize the claimed benefits of the component
approach. In Section 3 we describe the current state of
cluster system software, which is distinctly not compo-
nent based. In Section 4 we motivate the design and
deployment of an entirely new “system software stack”
on Chiba City. In Section 5 we describe the compo-
nent architecture deployed. In Section 6 we discuss our
experiences, and in Section 7 we present our conclu-
sions and outline directions for future work.

2. Expected Benefits of a Component
Architecture

As described in [?], a component approach to soft-
ware architecture has several advantages. First, the lo-
calization of functionality encourages reuse. That is,
having a single implementation of functionality reduces



code volume and leads to more reliable functional-
ity. Second, a particular implementation of a compo-
nent may evolve or be replaced by a better instanti-
ation without affecting the architecture of the overall
system or the implementations of other components.
Here, “better” may mean “more efficient,” “simpler,”
“less expensive,” or the like. One benefit of this substi-
tutability is that suitability metrics and decisions are in
the hands of the component integrator rather than the
author of the monolithic system, and thus are closer to
the end users. Third, the functions of disparate com-
ponents can be assembled in ways not envisioned by
their implementors. This process is referred to as third
party composition. In our case, the components came
either from contributors to the SciDAC Scalable Sys-
tems Software project or from the system administra-
tors; the component architecture allowed easy combi-
nation of components from multiple sources.

3. Monolithic System Software Archi-
tecture

Generally, cluster system software has consisted
of groups of monolithic applications without ab-
stract, public interfaces. OpenPBS [?] exemplifies such
a monolithic application suite. Internally, it imple-
ments queue management, scheduling, process man-
agement, and some monitoring capabilities. Of these,
only the scheduling portion of OpenPBS’s functional-
ity can be disabled or replaced.

Software providing monolithic suites of functional-
ity poses problems for system managers. Since a sin-
gle piece of software provides several different types
of functionality, advances in any one of these areas
cannot be utilized effectively. For example, both the
MPICH2 team and the LAM teams have put substan-
tial effort into parallel process management over the
last few years. These improved solutions are typically
layered inside OpenPBS’s process management system.
While this approach allows improved functionality in
some cases, performance benefits cannot be realized be-
cause two process management systems are in use.

Another issue with monolithic software suites is ac-
cessibility to internal functionality. As mentioned pre-
viously, process management functionality is provided
by OpenPBS. Unfortunately, no comprehensive inter-
face is provided for external usage. Hence, multiple pro-
cess management facilities are used in different cases.
Not only is this approach inefficient from an imple-
mentation perspective, but it also leads to subtleties
where none are required. Multiple implementations of
any subsystem will have differences in functionality, in-

terface semantics, and implementation quirks. This is
obviously a suboptimal solution.

We do not intend to target OpenPBS specifically;
POE from IBM and SGE from Sun have a similar ar-
chitecture and hence experience similar problems, as
do other resource management suites. Furthermore,
these systems have varied amounts of integration with
other system software components because of the lack
of standard component interfaces.

4. Motivations

Chiba City is a medium-sized testbed cluster at Ar-
gonne National Laboratory. Unlike many clusters, it
is primarily dedicated to computer science research,
as opposed to computational science, and hence faces
a number of issues not faced by computational clus-
ters [?]. The first is user-level configuration manage-
ment. Chiba City is used for all levels of system soft-
ware development, ranging from development of ker-
nel and driver software to high-level library and ap-
plication development. For this reason, configuration
management demands on the system are more exten-
sive than in the usual computational cluster model.
Users must be able to specify the compute node soft-
ware configuration in a reasonable fashion. This task
is especially difficult because most users are not famil-
iar with system administration issues.

In order to operate a system in production with
user-specified configurations, these configurations must
be automatically deployable, without system adminis-
trator intervention. Hence, the resource management
system must be able to reliably initiate and complete
compute node reconfiguration operations during indi-
vidual jobs, based on user input. Moreover, the fact
that users often need elevated privileges has a vari-
ety of implications for system configuration, both on
nodes and system wide. This requirement also affects
how the overall system software stack works. Sensitive
data cannot be left on nodes when a user is given root
access, and nodes must be rebuilt automatically after
jobs complete. This again requires interactions between
the resource management and configuration manage-
ment systems. These issues and others are discussed in
more detail in [?].

4.1. Previous System Software Stack

The initial implementation of Chiba City’s system
software stack had two operational modes for nodes.
In one case, nodes participated in the cluster as stan-
dard computational nodes, with complete integration
into the cluster and central management. In the other



case, nodes were partially disconnected from the clus-
ter system software stack; although in many ways the
nodes looked the same, the resource management stack
treated the nodes as down. This mode allowed suitable
configurations to be produced manually for users on
a case-by-case basis. When ad-hoc usage was finished,
nodes were manually rebuilt and reintegrated into the
scheduled pool. While these reconfiguration steps were
partially automated, they still relied on manual admin-
istrator initiation.

4.2. Scalable System Software

One of the primary reasons we chose to use a compo-
nent architecture when implementing this system soft-
ware was our involvement with the Scalable System
Software (SSS) project [?]. Substantial effort had al-
ready been put into developing a component architec-
ture and an infrastructure to aid in inter-component
communication. Implementing a system software com-
ponent architecture from scratch is difficult and time-
consuming. Had this not already been completed, the
decision to use a component architecture would not
have been nearly as appealing.

5. Component Design and Implementa-
tion

In this section we describe the component-based sys-
tems software that has actually been deployed on our
cluster. It consists of an infrastructure for component
interaction, some components that we have contributed
to the SSS project (see [?], for example), and some in-
stances of components that are part of the SSS archi-
tecture but have implementations by us that are spe-
cialized to the Chiba City environment.

5.1. Scalable Systems Software SciDAC
Design

The Scalable Systems Software project has under-
taken to design a component-based architecture for
cluster system software and to provide a prototype im-
plementation. The set of components and their rela-
tionships are shown in Figure 1. The Scalable Sys-
tems Software project early on decided that compo-
nents would communicate over sockets using XML mes-
sages, and much of the group’s effort so far has gone
into defining the exact format and content of such mes-
sages. The current status of this standardization effort
can be found at the Web site [?], where proposed stan-
dards for each component’s API are presented. The fol-

Figure 1: Scalable System Software Components

lowing is a list of components defined by the Scalable
System Software APIs.

• Service Directory: stores location information for
all active components.

• Event Manager: delivers asynchronous events
based on client-defined subscriptions.

• Node State Manager: tracks node operational and
administrative states and provides access to sys-
tem diagnostic capabilities.

• Node Configuration and Build Manager: provides
configuration management and node build func-
tionality.

• Hardware Infrastructure Manager: provides access
to power controllers and node consoles.

• Process Manager: provides all functions needed for
parallel process group management.

• Queue Manager: queues and executes user jobs.

• Scheduler: allocates resources based on system pol-
icy.

• Allocation Management: associates users with
projects and resource allocations for resource us-
age tracking.

• System and Job Monitor: aggregates monitoring
data.

• Accounting: provides summaries of resource usage.

• Checkpoint Manager: provides job checkpoint
control and associated data movement func-
tions. (This is the only component that does not
yet have an instantiation on Chiba City.)



5.2. Infrastructure

We have implemented, both for the SSS project in
general and for Chiba City in particular, an infrastruc-
ture that makes it convenient for components to reg-
ister with a global service directory, find other com-
ponents, agree on line protocols, and then exchange
messages with other components. Most components use
widely available XML parsers, and the communication
library has bindings for components written in Python,
C, C++, Perl, and Java. This infrastructure supports
the convenient integration of large components (such
as a version of the Maui scheduler, or the MPD pro-
cess management system) with PBS-compatible queue
managers, node monitors, configuration managers and
with accounting systems.

5.3. Implementation

A large portion of the Chiba City system software
stack consists of component implementations from the
Scalable System Software project. However, local re-
quirements necessitated the implementation of a site-
specific queue manager, a scheduler, and a file staging
component.

The queue manager implemented in the Chiba City
testbed provides native support for jobs that change
node configurations on the fly. This model differs sub-
stantially from the usual job model implemented by
queue managers; in most cases, nodes are assumed to
remain up available to a process management system
throughout the execution of a job. In our case, the
queue manager needed to have an internal represen-
tation of different user-specified configuration manage-
ment operations and an associated set of observable
characteristics of nodes in the process of reconfigura-
tion. This is a substantial difference from the typical
model.

The second component we implemented locally was
a scheduler. In this case, we needed a simple sched-
uler that accommodated the testbed operational mode.
That is, the scheduler needed to allow down (or rebuild-
ing or rebooting) nodes to participate in active jobs
or reservations. Our scheduler provides basic schedul-
ing functionality, including backfill, and uses some node
state management functionality to track nodes through
reconfiguration operation.

The last locally implemented component provides
file staging functionality. Chiba City doesn’t have a
global shared file system, and the SSS architecture
doesn’t specifically deal with this issue. When specify-
ing job parameters, users can describe the data needed
for their job, and it will be propagated to nodes ex-

ecuting the job. This component doesn’t exist in the
Scalable System Software design; however, the inher-
ent extensibility of the component architecture easily
allowed its addition.

6. Experiences

Overall, the component deployment and administra-
tion process has been very positive. Through the last
nine months, we have realized many of the benefits and
the two main shortcomings predicted by component ar-
chitecture proponents. This overall conclusion suggests
that our implementation of a component architecture
is comparable to those described in component archi-
tecture literature [?]. In this section we focus first on
issues involving component development. We then dis-
cuss our experiences as they relate to system adminis-
tration.

6.1. Development

Since the component architecture approach was de-
veloped in the software development community, the
assessments offered by its proponents directly apply to
systems software development. Particularly, we benefit-
ted from component substitutability and localization of
functionality. Development using component architec-
tures was not a uniformly positive experience. Com-
ponent architecture programming is similar to multi-
threaded programming, hence, many subtle issues can
cause problems. Also, changing component APIs is a
time consuming and difficult process when required.

Component substitutability allows development to
become separable on a component by component ba-
sis. When bugs or functionality shortcomings become
apparent in the systems software, development can fo-
cus on the single component requiring work. Work on
other component implementations can continue inde-
pendently, since the interfaces are standardized. This
separation requires developers to maintain familiarity
with smaller volumes of code; only API knowledge is
required for other components.

Localization of functionality reduces overall code
volume, improves reliability, and eases component
reimplementation. All of these benefits are exhib-
ited by the contrast between process manager im-
plementations used on Chiba City. In the original
Chiba City software stack, several independent im-
plementations of process management functionality
were used simultaneously. OpenPBS used its own dae-
mons to start job-related processes. User job processes
were started internally with mpirun, which used rsh
internally. Configuration management and ad hoc pro-



cesses were started by using pdsh, which also used rsh.
Each of these tools contained independent implemen-
tations of process management functionality, with dif-
ferent feature sets and idiosyncrasies. The OpenPBS
process management mechanism wasn’t accessible out-
side the context of jobs. The mpirun command pro-
vided parallel process group bootstrapping required by
MPI processes but didn’t provide exit codes from in-
dividual processes. The version of mpirun also var-
ied depending on the implementation of the MPI
library; other versions had different tradeoffs. The par-
allel command pdsh didn’t provide parallel startup
bootstrapping. Without a feature-based motiva-
tion, using multiple implementations of the same func-
tionality is rarely a good idea. Moreover, each of
these implementations will suffer from bugs in dif-
ferent ways, will perform at different levels, and
will require independent implementation of new fea-
tures.

The structure of the current process management
system used on Chiba City differs substantially. All
process management functions are provided by a cen-
tralized process manager, based on MPD [?]. A pdsh
analogue, called dsh has been implemented with a
similar feature set. As all complicated functionality is
implemented in the process manager, dsh consists of
simple code performing argument handling. Similarly,
user-job processes and MPI processes are also man-
aged using the process manager. This approach allows
performance and feature enhancements to seamlessly
propagate to all users of the process manager. Bug
fixes need only be implemented once. This approach
has yielded a large reduction in code volume. Client
code, for example dsh, is simple and small. Finally, con-
solidation of process management functionality has im-
proved its reliability and usability.

Component architecture benefits are appealing to
developers of system software; however, they come at
a price. We experienced several problems during devel-
opment. The first of these is the need for proper syn-
chronization and coherence assumptions between com-
ponents. Programming for component architectures is
similar to multithreaded programming. If implemen-
tors aren’t careful, race conditions can easily appear.
Problems caused by implementation errors in one com-
ponent can propagate to other components in unex-
pected ways, causing serious, larger system software
failures. Overall synchronization must be maintained.

A second, and related issue is congestive failure.
Since a component’s underlying behavior isn’t specified
outside of the API and high-level functionality, compo-
nents may block during API operations. If this occurs,
the client may also block, as its implementation is also

not specified. If this client is itself a component im-
plementation, then the client’s clients may block. This
pattern can easily cause deadlocks. If one were to con-
struct a directed graph of all components active in the
system, with directed edges between a component and
other components whose interfaces it consumes, dead-
locks could occur whenever the graph contained cycles.
Since component implementors determine which exter-
nal interfaces are consumed, deadlocks can be detected
only when considering a complete set of system soft-
ware component implementations.

Deadlocks can be avoided by careful implementa-
tion design and are mitigated by putting timeouts in
all stages of communication operations provided by the
latest version of the infrastructure library. A particu-
larly bad case can occur if a component’s API oper-
ation blocks while the component executes an opera-
tion in another component. In this case, blocking be-
havior can propagate through the system much more
easily.

We encountered a congestive failure case during the
development of the service directory. Originally, com-
ponent registration sent an event via the event man-
ager in a synchronous fashion. This approach worked
well, except when the event manager registered. As the
event manager was already blocking in registration, the
service directory blocked while attempting to send the
event. The whole system came to a halt, as the service
directory and event manager are at the center of all op-
erations in the component infrastructure. At this point,
any component needing to communicate with the ser-
vice directory would block. As more components are
stuck in this state, other components can be drawn in.
With the addition of timeouts in communication oper-
ations, the system could eventually right itself, but this
could potentially take the timeout value for each com-
ponent locked up. In addition, it is appealing to im-
plementors to retry failed operations, so it is possible
for the system to plunge back into the locked state af-
ter emerging.

A third issue arises from the fact that, while imple-
mentations’ interfaces are fixed, the underlying behav-
ior of the components is not fixed in a rigorous way.
The high-level behavior of the component is specified
and defined in terms of the component API. The un-
derlying implementation of this functionality is unspec-
ified, in order to restrict future implementors as little
as possible. This means that the specific behavior of a
component may vary from one implementation to the
next. Implementations of two components may inter-
act in unexpected ways if the public interfaces do not
capture all relevant aspects of a component’s seman-
tics.



The solution to this third issue is to design compo-
nents that do not block during operations. This can
be partially achieved at the communication protocol
level; however, components also need to be carefully de-
signed. Moreover, some amount of interoperability test-
ing is required for a complete suite of system software.
Contractually defined interfaces merely reduce this re-
quirement; they don’t remove it entirely.

Finally, component interface changes are required
in certain cases. Interface changes are extremely prob-
lematic, as they generally require a code changes to all
clients and a synchronized upgrade. This process can be
hindered by the distributed nature of component devel-
opment; all consumers of a component’s interface may
not be known. However, in practise this issue doesn’t
present itself. Fortunately, we have not needed to per-
form component interface changes often; over time they
have stabilized to the point that we are able to treat
them as static.

6.2. System Administration

The operational characteristics of a cluster operated
with component systems software are considerably dif-
ferent from those of a cluster operated with monolithic
software. Both system administrators and users are af-
fected, since both regularly interact with the system
software stack. At a high level, both benefit from in-
creased system software simplicity, transparency, and
agility.

System administrators are primarily concerned with
the system software operating correctly and reliably.
This process consists of finding a suitable software
stack, configuring it properly, debugging problems, and
helping users get work done. In many cases, find-
ing a suitable software stack can be quite difficult.
Many monolithic suites comprise complex, highly con-
figurable software. These developed because it seemed
easier to incrementally add support for all users than
to have multiple instances of components. In large part
this attitude can be traced to the complexity in commu-
nicating with multiple other software entities, without
common interfaces. With the addition of a set of com-
mon interfaces, this argument disappears, and small,
tuned components become much more viable.

The assumption with monolithic software is that it
can be reconfigured for any scenario. If this isn’t the
case, problems can develop. Even if the software can be
reconfigured appropriately, it is often difficult to do so,
as the configuration is so complex. When using com-
ponent systems software, a set of appropriate compo-
nents can be chosen based on their feature sets and op-
erational model. If an appropriate instance of a com-

ponent doesn’t exist, then well-formed interfaces allow
for easy reimplementation. For example, the resource
management suite for Chiba City, tuned for the testbed
environment, consists of less than 1,000 lines of code.
We decided that having a simple scheduler, implement-
ing FIFO with reservations and backfill, would be ad-
equate for our needs, and we were able to implement a
queue manager that properly interacts with the config-
uration management system. We were also able to eas-
ily add support for a file staging system, since Chiba
City doesn’t have a global shared file system.

Second, system administrators benefit from in-
creased component transparency. In order for com-
ponentized systems to function at the same level
as their monolithic equivalents, component inter-
faces must include exposure of all useful data so
that external components can work properly. For ex-
ample, the process management interface must pro-
vide all of the information necessary for its consumers
to function properly. In this case, a variety of informa-
tion about running and finished processes is exposed.
Clients can query process groups based on criteria in-
cluding effective user ID, process ID, execution host,
and session ID. Information provided by legacy pro-
cess management environments are not nearly as
rich. This richness allows for the formulation of com-
plex queries, impossible to predict at the time of
component implementation. Moreover, when consid-
ering the associated possibilities for third part com-
position, administrators can associate information
from multiple components. During normal opera-
tions, this means that administrators have complex
tools at their disposal for both one-time problem de-
termination and automation of complex tasks. One ex-
ample is the location of all of a single job’s processes
across the entire system for the purpose of monitor-
ing. Information from the scheduler, queue manager,
and process manager can be used to locate all pro-
cesses. The scheduler can provide all active resource
allocations for the job. The queue manager can pro-
vide a list of all process groups active for that job. The
process manager provides a list of hostname and pro-
cess ID tuples for the process group. This sort of query
is a simple example of the functionality that compo-
nent architectures expose for all users. The exposure of
such information allows sites to compose real-time in-
formation in ways systems software implementors were
completely unable to predict.

Third, component systems software benefits from
a substantial improvement in agility. Localization of
functionality and a shared component infrastructure
dramatically reduce the size of components. Since the
effort required to maintain and modify code increases



greatly with the size of code, components are easier to
develop or modify locally than their monolithic equiv-
alents. Because of this, system administrators are em-
powered in a way that is impossible with monolithic
systems. Since component and client code is simpler,
it can be more easily modified based on local require-
ments or problems experienced. This simple difference
causes an important change in attitude. With mono-
lithic suites, administrators accept bugs and problems
because the cost of creating and maintaining fixes is
just too high. In contrast, the cost of modifying compo-
nents is lower and component reimplementation is en-
abled. Lowering the cost of localized system software
development can substantially alter the experience of
system management.

7. Conclusions and Further Work

Component architectures have a variety of useful
properties for implementors and users of system soft-
ware. Overall, our experience with component architec-
tures on Chiba City has been positive. The complexity
of the system software has decreased while agility and
reliability have increased. Development of system soft-
ware has been eased by compartmentalization of func-
tion and independence of deployment. Moreover, clus-
ter operations have been improved by increased trans-
parency and adaptability.

We believe that the use of component architectures
in system software development is a promising method-
ology for both development and usage. As use of this
approach increases a larger variety of component im-
plementations will become available. The current Scal-
able System Software reference implementation is avail-
able packaged as an OSCAR distribution, and public
release of our testbed components is forthcoming. Ad-
ministrators will be able to choose an appropriate set
of system software for their environment, without the
need for local development. In the case where local re-
quirements are unique, development is aided by a com-
plete set of documented, public APIs.

Acknowledgments

This work was supported by the Mathematical, In-
formation, and Computational Sciences Division sub-
program of the Office of Advanced Scientific Comput-
ing Research, Office of Science, U.S. Department of En-
ergy, under Contract W-31-109-ENG-38.

References


	Introduction
	Expected Benefits of a Component Architecture
	Monolithic System Software Architecture
	Motivations
	Previous System Software Stack
	Scalable System Software

	Component Design and Implementation
	Scalable Systems Software SciDAC Design
	Infrastructure
	Implementation

	Experiences
	Development
	System Administration

	Conclusions and Further Work

